V = 3403.4 (2) Å³

Cu Ka radiation

 $0.40 \times 0.35 \times 0.33 \text{ mm}$

11856 measured reflections

6027 independent reflections

5456 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 13.59 \text{ mm}^{-1}$

T = 298 K

 $R_{\rm int} = 0.045$

496 parameters

 $\Delta \rho_{\rm max} = 1.36 \text{ e} \text{ Å}^-$

 $\Delta \rho_{\rm min} = -2.76 \text{ e } \text{\AA}^{-3}$

Z = 4

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(2,6-dihydroxybenzoato- $\kappa^2 O^1, O^{1'}$)-(nitrato- $\kappa^2 O, O'$)bis(1,10-phenanthroline- $\kappa^2 N, N'$)samarium(III)

Guobo Hu, Chiya Wang, Dingfeng Jin and Hongxiao Jin*

College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China Correspondence e-mail: jin_hongxiao@yahoo.com.cn

Received 11 November 2010; accepted 14 November 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.009 Å; R factor = 0.048; wR factor = 0.122; data-to-parameter ratio = 12.2.

The title mononuclear complex, $[Sm(C_7H_5O_3)_2(NO_3)-(C_{12}H_8N_2)_2]$, is isostructural with that of other lanthanides. The Sm atom is in a pseudo-bicapped square-antiprismatic geometry, formed by four N atoms from two chelating 1,10-phenanthroline (phen) ligands and by six O atoms, four from two 2,6-dihydroxybenzoate (DHB) ligands and the other two from a nitrate anion. π - π stacking interactions between phen and DHB ligands [centroid–centroid distance = 3.528 (4) and 3.812 (3) Å], and phen and phen ligands [face-to-face separation = 3.420 (10) Å] of adjacent complexes stabilize the crystal structure. Intramolecular O–H···O hydrogen bonds are observed in the DHB ligands.

Related literature

For background and details of a related structure, see: Zheng *et al.* (2010).

HO OH HO OH N Sm O HO HO HO

Experimental

Crystal data

 $[Sm(C_7H_8O_3)_2(NO_3)(C_{12}H_8N_2)_2]$ $M_r = 878.99$ Monoclinic, $P2_1/c$ a = 11.2022 (3) Å b = 26.7672 (7) Å c = 14.3326 (5) Å $\beta = 127.635$ (2)°

Data collection

Oxford Diffraction Gemini S Ultra diffractometer Absorption correction: multi-scan [ABSPACK in CrysAlis PRO RED (Oxford Diffraction, 2006)] $T_{\rm min} = 0.074, T_{\rm max} = 0.094$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.122$ S = 1.066027 reflections

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O4-H31···O2	0.82	1.87	2.594 (5)	147
O3−H27···O1	0.82	1.83	2.562 (6)	149
O8−H38···O6	0.82	1.85	2.578 (6)	147
O7−H34···O5	0.82	1.86	2.589 (5)	147

Data collection: *CrysAlis PRO CCD* (Oxford Diffraction, 2006); cell refinement: *CrysAlis PRO CCD*; data reduction: *CrysAlis PRO RED* (Oxford Diffraction, 2006); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Berndt, 1999); software used to prepare material for publication: *SHELXL97*.

The authors are grateful for financial support from the Natural Science Foundation of Zhejiang Province (project No. 2010 Y4100495).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2228).

References

Brandenburg, K. & Berndt, M. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

Oxford Diffraction (2006). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Zheng, J., Jin, H. & Ge, H. (2010). Acta Cryst. E66, m1469-m1470.

Acta Cryst. (2010). E66, m1613 [doi:10.1107/S1600536810047136]

Bis(2,6-dihydroxybenzoato- $\kappa^2 O^1, O^1'$)(nitrato- $\kappa^2 O, O'$)bis(1,10-phenanthroline- $\kappa^2 N, N'$)samarium(III)

G. Hu, C. Wang, D. Jin and H. Jin

Comment

The description of the structure of the title compound is part of a series of papers on mononuclear complexes of the type $[Ln(C_{12}H_8N_2)_2(C_7H_8O_3)_2 (NO_3)]$, with Ln = Ce, Pr, Sm (this publication), Eu, and Dy. All five compounds are isostructural to the previously reported Nd complex (Zheng *et al.* 2010). The background to this study is given in the previous paper by Zheng *et al.* (2010).

Experimental

Each reagent was commercially available and of analytical grade. $Sm(NO_3)_3.6H_2O$ (0.222 g, 0.5 mmol), 2, 6-dihydroxybenzoic acid (0.074 g 0.5mmol), 1, 10-phenanthroline (0.090 g, 0.5 mmol) and NaHCO₃ (0.042 g, 0.5 mmol) were dissolved in water-ethanol solution (10 ml, 5:5). The solution was refluxed for 4 h, and filtered after cooling to room temperature. Orange single crystals were obtained from the filtrate after 3 days.

Refinement

H atoms were positioned geometrically (C—H = 0.93 Å and O—H = 0.82 Å) and refined as riding, with U_{iso} (H) = 1.2Ueq (C) and U_{iso} (H) = 1.5Ueq (O).

Figures

Fig. 1. The molecular structure of title compound. Displacement ellipsoids are drawn at the 15% probability level and H atoms are shown as small spheres of arbitraty radii. Some H atoms are omitted for clarity. Light orange lines show the intramolecular hydrogen bonds (see Table 1 for details).

Bis(2,6-dihydroxybenzoato- $\kappa^2 O^1, O^{1'}$)(nitrato- $\kappa^2 O, O'$)bis(1,10-phenanthroline- $\kappa^2 N, N'$)samarium(III)

Crystal data $[Sm(C_7H_5O_3)_2(NO_3)(C_{12}H_8N_2)_2]$ $M_r = 878.99$ Monoclinic, $P2_1/c$

F(000) = 1756 $D_x = 1.715 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54184 \text{ Å}$

Hall symbol: -P 2ybc a = 11.2022 (3) Å b = 26.7672 (7) Å c = 14.3326 (5) Å $\beta = 127.635$ (2)° V = 3403.4 (2) Å³ Z = 4

Data collection

Oxford Diffraction Gemini S Ultra 6027 independent reflections diffractometer Radiation source: Enhance Ultra (Cu) X-ray Source 5456 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.045$ mirror $\theta_{\text{max}} = 67.5^{\circ}, \ \theta_{\text{min}} = 3.3^{\circ}$ Detector resolution: 15.9149 pixels mm⁻¹ $h = -12 \rightarrow 13$ ω scans Absorption correction: multi-scan [ABSPACK in CrysAlis PRO RED (Oxford Diffrac $k = -31 \rightarrow 30$ tion, 2006)] $T_{\min} = 0.074, T_{\max} = 0.094$ $l = -17 \rightarrow 17$ 11856 measured reflections

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.122$	H-atom parameters constrained
<i>S</i> = 1.06	$w = 1/[\sigma^2(F_0^2) + (0.0765P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
6027 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
496 parameters	$\Delta \rho_{\rm max} = 1.36 \ {\rm e} \ {\rm \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -2.76 \text{ e } \text{\AA}^{-3}$
0 constraints	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Cell parameters from 7456 reflections $\theta = 3.3-67.5^{\circ}$ $\mu = 13.59 \text{ mm}^{-1}$ T = 298 KPrism, orange $0.40 \times 0.35 \times 0.33 \text{ mm}$

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Sm1	0.56897 (3)	0.861766 (8)	0.279589 (19)	0.02143 (11)
01	0.8344 (4)	0.89268 (14)	0.4021 (4)	0.0424 (9)
02	0.8043 (4)	0.81199 (13)	0.3668 (3)	0.0345 (8)
O3	1.0803 (5)	0.93558 (17)	0.4708 (5)	0.0656 (14)
H27	0.9948	0.9328	0.4511	0.098*
O4	1.0183 (4)	0.75825 (14)	0.3973 (3)	0.0421 (9)
H31	0.9363	0.7639	0.3823	0.063*
05	0.6113 (4)	0.91857 (13)	0.4429 (3)	0.0370 (8)
O6	0.6545 (4)	0.83811 (13)	0.4803 (3)	0.0361 (8)
07	0.6655 (7)	0.97939 (15)	0.6052 (4)	0.0731 (17)
H34	0.6395	0.9708	0.5403	0.110*
08	0.7432 (5)	0.80232 (14)	0.6803 (4)	0.0513 (11)
H38	0.7138	0.8017	0.6121	0.077*
O9	0.5441 (4)	0.80040 (13)	0.1275 (3)	0.0399 (8)
O10	0.6521 (5)	0.87136 (14)	0.1517 (4)	0.0423 (9)
011	0.6352 (6)	0.8162 (2)	0.0333 (4)	0.0745 (16)
N1	0.5255 (5)	0.95464 (14)	0.2095 (3)	0.0285 (8)
N2	0.3339 (5)	0.88100 (14)	0.0607 (3)	0.0257 (8)
N3	0.3170 (5)	0.86703 (14)	0.2519 (4)	0.0265 (8)
N4	0.4413 (4)	0.77832 (13)	0.2615 (3)	0.0256 (8)
N5	0.6111 (5)	0.82878 (18)	0.1017 (4)	0.0369 (10)
C1	0.6194 (7)	0.99111 (19)	0.2810 (5)	0.0377 (12)
H1	0.6950	0.9837	0.3598	0.045*
C2	0.6085 (8)	1.0397 (2)	0.2421 (6)	0.0472 (14)
H2	0.6764	1.0639	0.2947	0.057*
C3	0.4987 (7)	1.05217 (17)	0.1271 (6)	0.0413 (13)
H3	0.4911	1.0846	0.1008	0.050*
C4	0.3974 (6)	1.01504 (17)	0.0494 (5)	0.0319 (10)
C5	0.4155 (5)	0.96681 (16)	0.0939 (4)	0.0257 (9)
C6	0.3146 (5)	0.92780 (17)	0.0160 (4)	0.0253 (9)
C7	0.1982 (5)	0.9392 (2)	-0.1042 (4)	0.0323 (10)
C8	0.1840 (6)	0.9888 (2)	-0.1461 (5)	0.0418 (13)
H8	0.1082	0.9962	-0.2249	0.050*
C9	0.2792 (7)	1.0252 (2)	-0.0727 (5)	0.0419 (13)
H9	0.2681	1.0573	-0.1017	0.050*
C10	0.1017 (6)	0.9002 (2)	-0.1772 (5)	0.0402 (12)
H10	0.0255	0.9063	-0.2567	0.048*
C11	0.1190 (6)	0.8536 (2)	-0.1323 (5)	0.0386 (12)
H11	0.0546	0.8277	-0.1796	0.046*
C12	0.2376 (6)	0.84599 (19)	-0.0121 (4)	0.0326 (11)
H12	0.2491	0.8142	0.0185	0.039*
C13	0.2574 (6)	0.9104 (2)	0.2502 (5)	0.0392 (12)
H13	0.3166	0.9390	0.2751	0.047*
C14	0.1097 (7)	0.9147 (2)	0.2125 (5)	0.0482 (15)
H14	0.0715	0.9456	0.2119	0.058*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C15	0.0213 (7)	0.8725 (3)	0.1762 (5)	0.0469 (14)
H15	-0.0779	0.8749	0.1495	0.056*
C16	0.0812 (6)	0.8262 (2)	0.1797 (4)	0.0359 (11)
C17	0.2304 (5)	0.82545 (19)	0.2191 (4)	0.0295 (10)
C18	0.2987 (5)	0.77830 (17)	0.2286 (4)	0.0267 (9)
C19	0.2179 (6)	0.7335 (2)	0.2043 (4)	0.0340 (11)
C20	0.0639(7)	0.7363 (2)	0.1606 (5)	0.0438 (13)
H20	0.0086	0.7070	0.1410	0.053*
C21	-0.0021 (6)	0.7802 (3)	0.1475 (5)	0.0477 (15)
H21	-0.1028	0.7809	0.1173	0.057*
C22	0.2936 (7)	0.68849 (19)	0.2237 (5)	0.0400 (12)
H22	0.2451	0.6582	0.2109	0.048*
C23	0.4378 (7)	0.68904 (19)	0.2612 (4)	0.0385 (12)
H23	0.4896	0.6593	0.2762	0.046*
C24	0.5073 (6)	0.73497 (18)	0.2768 (4)	0.0344 (11)
H24	0.6046	0.7350	0.2991	0.041*
C25	0.8869 (6)	0.85025 (18)	0.4003 (4)	0.0295 (10)
C26	1.0401 (6)	0.8472 (2)	0.4337 (4)	0.0315 (10)
C27	1.1307 (6)	0.8902 (2)	0.4672 (5)	0.0403 (12)
C28	1.2734 (7)	0.8871 (3)	0.4977 (5)	0.0538 (17)
H28	1.3333	0.9154	0.5209	0.065*
C29	1.3266 (6)	0.8405 (3)	0.4933 (5)	0.0505 (16)
H29	1.4227	0.8382	0.5136	0.061*
C30	1.2411 (6)	0.7983 (2)	0.4599 (5)	0.0406 (12)
H30	1.2786	0.7678	0.4568	0.049*
C31	1.0983 (6)	0.8009 (2)	0.4306 (4)	0.0331 (11)
C32	0.6540 (5)	0.88185 (17)	0.5142 (4)	0.0278 (10)
C33	0.7025 (5)	0.89010 (18)	0.6348 (4)	0.0274 (9)
C34	0.7070 (7)	0.9386 (2)	0.6748 (5)	0.0408 (13)
C35	0.7551 (9)	0.9461 (2)	0.7888 (6)	0.0562 (17)
H35	0.7586	0.9782	0.8153	0.067*
C36	0.7975 (7)	0.9058 (3)	0.8622 (5)	0.0512 (15)
H36	0.8302	0.9111	0.9387	0.061*
C37	0.7929 (7)	0.8582 (2)	0.8260 (5)	0.0438 (14)
H37	0.8215	0.8315	0.8772	0.053*
C38	0.7453 (6)	0.8496 (2)	0.7118 (4)	0.0321 (10)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sm1	0.01716 (16)	0.02004 (15)	0.02685 (16)	-0.00046 (8)	0.01331 (12)	0.00015 (8)
01	0.0257 (19)	0.0378 (19)	0.059 (2)	-0.0055 (16)	0.0234 (18)	-0.0091 (17)
O2	0.0195 (17)	0.0341 (17)	0.0463 (19)	-0.0009 (14)	0.0183 (16)	0.0010 (15)
O3	0.042 (3)	0.049 (2)	0.090 (4)	-0.019 (2)	0.032 (3)	-0.017 (2)
O4	0.0255 (19)	0.0411 (19)	0.056 (2)	0.0000 (16)	0.0232 (18)	-0.0066 (17)
O5	0.039 (2)	0.0383 (19)	0.0333 (17)	0.0040 (16)	0.0219 (17)	0.0025 (15)
O6	0.035 (2)	0.0334 (18)	0.0323 (17)	-0.0015 (15)	0.0166 (16)	-0.0043 (14)
O7	0.132 (5)	0.033 (2)	0.048 (2)	0.018 (3)	0.052 (3)	0.0044 (18)

O8	0.056 (3)	0.0343 (19)	0.042 (2)	0.0019 (19)	0.019 (2)	0.0073 (16)
O9	0.039 (2)	0.0376 (18)	0.046 (2)	0.0016 (17)	0.0270 (18)	-0.0026 (16)
O10	0.046 (2)	0.0413 (19)	0.051 (2)	-0.0043 (18)	0.036 (2)	0.0058 (17)
011	0.070 (3)	0.124 (5)	0.049 (2)	0.007 (3)	0.046 (3)	-0.013 (3)
N1	0.029 (2)	0.0232 (18)	0.0339 (19)	-0.0011 (16)	0.0193 (18)	-0.0021 (15)
N2	0.024 (2)	0.0254 (18)	0.0298 (19)	0.0005 (16)	0.0177 (17)	0.0009 (15)
N3	0.021 (2)	0.033 (2)	0.0279 (19)	0.0067 (16)	0.0162 (18)	0.0055 (15)
N4	0.020 (2)	0.0229 (18)	0.0308 (19)	-0.0014 (15)	0.0141 (16)	0.0030 (15)
N5	0.028 (2)	0.052 (3)	0.031 (2)	0.010 (2)	0.0185 (19)	0.0044 (19)
C1	0.043 (3)	0.030 (2)	0.046 (3)	-0.010 (2)	0.031 (3)	-0.009 (2)
C2	0.055 (4)	0.033 (3)	0.065 (4)	-0.014 (3)	0.042 (3)	-0.013 (3)
C3	0.059 (4)	0.017 (2)	0.068 (4)	0.002 (2)	0.049 (3)	0.001 (2)
C4	0.038 (3)	0.024 (2)	0.051 (3)	0.010 (2)	0.036 (3)	0.009 (2)
C5	0.025 (2)	0.023 (2)	0.039 (2)	0.0066 (18)	0.024 (2)	0.0037 (18)
C6	0.020 (2)	0.029 (2)	0.033 (2)	0.0073 (18)	0.020 (2)	0.0052 (18)
C7	0.020 (2)	0.043 (3)	0.034 (2)	0.009 (2)	0.017 (2)	0.008 (2)
C8	0.032 (3)	0.050 (3)	0.047 (3)	0.021 (3)	0.026 (3)	0.022 (3)
C9	0.045 (3)	0.034 (3)	0.061 (3)	0.021 (2)	0.040 (3)	0.023 (2)
C10	0.023 (3)	0.060 (3)	0.033 (3)	0.004 (2)	0.014 (2)	0.003 (2)
C11	0.018 (3)	0.056 (3)	0.031 (3)	-0.006 (2)	0.009 (2)	-0.006 (2)
C12	0.032 (3)	0.030 (2)	0.034 (2)	-0.004 (2)	0.020 (2)	-0.001 (2)
C13	0.035 (3)	0.040 (3)	0.045 (3)	0.010 (2)	0.025 (3)	0.001 (2)
C14	0.038 (3)	0.058 (3)	0.048 (3)	0.028 (3)	0.026 (3)	0.013 (3)
C15	0.024 (3)	0.076 (4)	0.041 (3)	0.017 (3)	0.020 (3)	0.013 (3)
C16	0.022 (2)	0.057 (3)	0.027 (2)	0.004 (2)	0.014 (2)	0.005 (2)
C17	0.023 (2)	0.041 (3)	0.023 (2)	0.000 (2)	0.0140 (19)	0.0029 (19)
C18	0.024 (2)	0.033 (2)	0.024 (2)	-0.0042 (19)	0.0152 (19)	-0.0009 (17)
C19	0.033 (3)	0.044 (3)	0.023 (2)	-0.017 (2)	0.015 (2)	-0.0051 (19)
C20	0.034 (3)	0.057 (3)	0.039 (3)	-0.021 (3)	0.022 (2)	-0.005 (3)
C21	0.023 (3)	0.082 (4)	0.035 (3)	-0.013 (3)	0.016 (2)	0.002 (3)
C22	0.052 (4)	0.030 (2)	0.038 (3)	-0.013 (2)	0.028 (3)	-0.002 (2)
C23	0.048 (3)	0.028 (2)	0.036 (3)	0.001 (2)	0.023 (2)	0.004 (2)
C24	0.032 (3)	0.029 (2)	0.042 (3)	0.004 (2)	0.023 (2)	0.002 (2)
C25	0.021 (2)	0.032 (2)	0.029 (2)	-0.002 (2)	0.012 (2)	-0.0017 (19)
C26	0.018 (2)	0.041 (3)	0.026 (2)	-0.005 (2)	0.0085 (19)	-0.002 (2)
C27	0.027 (3)	0.050 (3)	0.035 (3)	-0.011 (2)	0.014 (2)	-0.005 (2)
C28	0.035 (3)	0.074 (4)	0.044 (3)	-0.026 (3)	0.020 (3)	-0.005 (3)
C29	0.022 (3)	0.090 (5)	0.036 (3)	-0.008 (3)	0.015 (2)	0.001 (3)
C30	0.021 (3)	0.067 (4)	0.033 (2)	0.005 (2)	0.016 (2)	0.000 (2)
C31	0.023 (2)	0.052 (3)	0.024 (2)	0.000 (2)	0.014 (2)	0.001 (2)
C32	0.019 (2)	0.031 (2)	0.030 (2)	-0.0010 (19)	0.014 (2)	0.0001 (19)
C33	0.017 (2)	0.035 (2)	0.027 (2)	-0.0003 (18)	0.0115 (19)	-0.0017 (18)
C34	0.047 (3)	0.037 (3)	0.034 (3)	0.012 (2)	0.022 (3)	0.003 (2)
C35	0.075 (5)	0.050 (3)	0.044 (3)	0.011 (3)	0.037 (3)	-0.006 (3)
C36	0.047 (4)	0.074 (4)	0.029 (3)	0.009 (3)	0.021 (3)	0.003 (3)
C37	0.029 (3)	0.062 (4)	0.030 (3)	0.004 (2)	0.013 (2)	0.010 (2)
C38	0.016 (2)	0.039 (2)	0.030 (2)	-0.003 (2)	0.009 (2)	0.003 (2)

Geometric parameters (Å, °)

Sm1—06	2.496 (4)	С9—Н9	0.9300
Sm1—O1	2.497 (4)	C10—C11	1.363 (8)
Sm1—O2	2.503 (3)	C10—H10	0.9300
Sm1—O10	2.526 (4)	C11—C12	1.407 (7)
Sm1—N4	2.579 (4)	C11—H11	0.9300
Sm1—O5	2.581 (3)	C12—H12	0.9300
Sm1—N3	2.603 (4)	C13—C14	1.397 (8)
Sm1—09	2.605 (4)	С13—Н13	0.9300
Sm1—N1	2.613 (4)	C14—C15	1.377 (10)
Sm1—N2	2.637 (4)	C14—H14	0.9300
O1—C25	1.286 (6)	C15—C16	1.395 (8)
O2—C25	1.262 (6)	С15—Н15	0.9300
O3—C27	1.353 (8)	C16—C17	1.400 (7)
O3—H27	0.8200	C16—C21	1.442 (8)
O4—C31	1.345 (6)	C17—C18	1.439 (7)
O4—H31	0.8200	C18—C19	1.413 (7)
O5—C32	1.281 (6)	C19—C22	1.399 (8)
O6—C32	1.269 (6)	C19—C20	1.433 (8)
O7—C34	1.355 (7)	C20—C21	1.338 (9)
O7—H34	0.8200	С20—Н20	0.9300
O8—C38	1.338 (7)	C21—H21	0.9300
O8—H38	0.8200	C22—C23	1.355 (8)
O9—N5	1.271 (6)	С22—Н22	0.9300
O10—N5	1.273 (6)	C23—C24	1.398 (7)
O11—N5	1.212 (6)	С23—Н23	0.9300
N1—C1	1.339 (6)	C24—H24	0.9300
N1—C5	1.370 (6)	C25—C26	1.475 (7)
N2—C12	1.325 (6)	C26—C27	1.411 (7)
N2—C6	1.363 (6)	C26—C31	1.415 (8)
N3—C13	1.332 (6)	C27—C28	1.378 (9)
N3—C17	1.358 (6)	C28—C29	1.401 (11)
N4—C24	1.321 (6)	C28—H28	0.9300
N4—C18	1.361 (6)	C29—C30	1.365 (9)
C1—C2	1.391 (8)	С29—Н29	0.9300
C1—H1	0.9300	C30—C31	1.386 (7)
C2—C3	1.366 (9)	С30—Н30	0.9300
С2—Н2	0.9300	C32—C33	1.479 (7)
C3—C4	1.405 (8)	C33—C38	1.406 (7)
С3—Н3	0.9300	C33—C34	1.407 (7)
C4—C5	1.399 (6)	C34—C35	1.388 (8)
C4—C9	1.434 (8)	C35—C36	1.373 (9)
C5—C6	1.440 (7)	С35—Н35	0.9300
C6—C7	1.420 (7)	C36—C37	1.367 (9)
C7—C10	1.403 (8)	С36—Н36	0.9300
С7—С8	1.426 (7)	C37—C38	1.395 (8)
C8—C9	1.350 (9)	С37—Н37	0.9300

С8—Н8	0.9300		
O6—Sm1—O1	79.60 (13)	С9—С8—Н8	119.6
O6—Sm1—O2	75.13 (12)	С7—С8—Н8	119.6
O1—Sm1—O2	52.14 (11)	C8—C9—C4	121.0 (5)
O6—Sm1—O10	144.12 (14)	С8—С9—Н9	119.5
O1—Sm1—O10	70.61 (14)	С4—С9—Н9	119.5
O2—Sm1—O10	70.96 (13)	C11—C10—C7	120.4 (5)
O6—Sm1—N4	72.23 (12)	C11—C10—H10	119.8
O1—Sm1—N4	135.00 (12)	С7—С10—Н10	119.8
O2—Sm1—N4	86.53 (11)	C10-C11-C12	117.8 (5)
O10—Sm1—N4	116.30 (13)	C10-C11-H11	121.1
O6—Sm1—O5	51.34 (11)	C12—C11—H11	121.1
O1—Sm1—O5	71.74 (13)	N2-C12-C11	124.6 (5)
O2—Sm1—O5	107.85 (12)	N2-C12-H12	117.7
O10—Sm1—O5	130.81 (12)	C11—C12—H12	117.7
N4—Sm1—O5	112.62 (12)	N3—C13—C14	122.7 (6)
O6—Sm1—N3	78.86 (13)	N3—C13—H13	118.6
O1—Sm1—N3	143.53 (13)	C14—C13—H13	118.6
O2—Sm1—N3	144.92 (11)	C15—C14—C13	119.2 (5)
O10—Sm1—N3	136.88 (13)	C15—C14—H14	120.4
N4—Sm1—N3	63.14 (12)	C13—C14—H14	120.4
O5—Sm1—N3	71.81 (13)	C14—C15—C16	119.6 (5)
O6—Sm1—O9	125.05 (11)	C14—C15—H15	120.2
O1—Sm1—O9	105.69 (13)	C16—C15—H15	120.2
O2—Sm1—O9	67.92 (12)	C15—C16—C17	117.3 (5)
O10—Sm1—O9	49.84 (12)	C15—C16—C21	123.0 (5)
N4—Sm1—O9	66.46 (12)	C17—C16—C21	119.7 (5)
O5—Sm1—O9	175.58 (12)	N3—C17—C16	123.5 (5)
N3—Sm1—O9	110.77 (12)	N3—C17—C18	117.4 (4)
O6—Sm1—N1	122.32 (12)	C16—C17—C18	119.1 (5)
O1—Sm1—N1	79.47 (13)	N4-C18-C19	121.7 (5)
O2—Sm1—N1	126.21 (12)	N4-C18-C17	118.4 (4)
O10—Sm1—N1	71.89 (13)	C19—C18—C17	119.9 (5)
N4—Sm1—N1	145.46 (12)	C22—C19—C18	117.5 (5)
O5—Sm1—N1	71.10 (12)	C22—C19—C20	123.7 (5)
N3—Sm1—N1	87.69 (12)	C18—C19—C20	118.8 (5)
O9—Sm1—N1	112.25 (12)	C21—C20—C19	121.5 (5)
O6—Sm1—N2	145.35 (13)	C21—C20—H20	119.2
O1—Sm1—N2	131.85 (13)	С19—С20—Н20	119.2
O2—Sm1—N2	132.86 (12)	C20-C21-C16	120.8 (5)
O10—Sm1—N2	70.09 (13)	C20-C21-H21	119.6
N4—Sm1—N2	87.71 (12)	C16—C21—H21	119.6
O5—Sm1—N2	117.46 (12)	C23—C22—C19	120.0 (5)
N3—Sm1—N2	66.80 (12)	C23—C22—H22	120.0
O9—Sm1—N2	66.95 (12)	C19—C22—H22	120.0
N1—Sm1—N2	62.66 (12)	C22—C23—C24	119.1 (5)
C25—O1—Sm1	93.2 (3)	С22—С23—Н23	120.5
C25—O2—Sm1	93.6 (3)	С24—С23—Н23	120.5
С27—О3—Н27	109.5	N4—C24—C23	123.0 (5)

C31—O4—H31	109.5	N	4—C24—H24		118.5
C32—O5—Sm1	92.5 (3)	C2	23—С24—Н24		118.5
C32—O6—Sm1	96.8 (3)	Oź	2—C25—O1		119.1 (5)
С34—О7—Н34	109.5	Oź	2—C25—C26		121.1 (5)
C38—O8—H38	109.5	0	1—C25—C26		119.8 (5)
N5—O9—Sm1	94.9 (3)	C	27—C26—C31		118.5 (5)
N5—O10—Sm1	98.7 (3)	C	27—C26—C25		121.2 (5)
C1—N1—C5	117.3 (4)	C	31—C26—C25		120.3 (5)
C1—N1—Sm1	121.7 (3)	0.	3—C27—C28		118.2 (6)
C5—N1—Sm1	120.7 (3)	0.	3—C27—C26		121.0 (5)
C12—N2—C6	117.4 (4)	C	28—C27—C26		120.8 (6)
C12—N2—Sm1	122.7 (3)	C	27—C28—C29		118.9 (6)
C6—N2—Sm1	119.7 (3)	C	27—С28—Н28		120.5
C13—N3—C17	117.6 (5)	C	29—С28—Н28		120.5
C13—N3—Sm1	122.3 (4)	C	30—C29—C28		121.8 (5)
C17—N3—Sm1	119.2 (3)	C	30—С29—Н29		119.1
C24—N4—C18	118.5 (4)	C	28—С29—Н29		119.1
C24—N4—Sm1	121.6 (3)	C	29—C30—C31		119.8 (6)
C18—N4—Sm1	119.8 (3)	C	29—С30—Н30		120.1
011—N5—O9	122.1 (5)	C	31—С30—Н30		120.1
O11—N5—O10	121.5 (5)	04	4—C31—C30		117.4 (5)
O9—N5—O10	116.4 (4)	04	4—C31—C26		122.4 (5)
N1—C1—C2	122.7 (5)	C	30—C31—C26		120.2 (5)
N1—C1—H1	118.7	O	6—C32—O5		119.3 (4)
С2—С1—Н1	118.7	O	6—C32—C33		120.0 (4)
C3—C2—C1	120.4 (5)	03	5—C32—C33		120.6 (4)
С3—С2—Н2	119.8	Cá	38—C33—C34		118.8 (5)
С1—С2—Н2	119.8	Cá	38—C33—C32		120.5 (4)
C2—C3—C4	118.7 (5)	C	34—C33—C32		120.6 (4)
С2—С3—Н3	120.6	0′	7—С34—С35		117.5 (5)
С4—С3—Н3	120.6	O	7—С34—С33		122.2 (5)
C5—C4—C3	118.0 (5)	C	35—C34—C33		120.3 (5)
C5—C4—C9	120.0 (5)	C	36—C35—C34		119.5 (6)
C3—C4—C9	122.0 (5)	C	36—С35—Н35		120.2
N1—C5—C4	123.0 (5)	C	34—С35—Н35		120.2
N1—C5—C6	117.8 (4)	C	37—C36—C35		121.8 (5)
C4—C5—C6	119.2 (4)	C	37—С36—Н36		119.1
N2—C6—C7	122.1 (4)	C	35—С36—Н36		119.1
N2—C6—C5	118.5 (4)	C	36—C37—C38		119.9 (5)
C7—C6—C5	119.3 (4)	C	36—С37—Н37		120.0
C10—C7—C6	117.6 (5)	C	38—С37—Н37		120.0
C10—C7—C8	122.7 (5)	0	8—C38—C37		117.8 (5)
C6—C7—C8	119.6 (5)	O	8—C38—C33		122.5 (5)
C9—C8—C7	120.8 (5)	C	37—C38—C33		119.7 (5)
Hydrogen-bond geometry (Å, °)					
D—H···A	<i>D</i> –	–H	H···A	$D \cdots A$	D—H··· A
O4—H31…O2	0.8	2	1.87	2.594 (5)	147

O3—H27…O1	0.82	1.83	2.562 (6)	149
O8—H38…O6	0.82	1.85	2.578 (6)	147
O7—H34…O5	0.82	1.86	2.589 (5)	147

Fig. 1